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CONSTRUCTION OF SMOOTHING SPLINES BY LINEAR PROGRAMMING 

METHODS 

A. G. Pogorelov UDC 517.536.946 

The mathematical questions and algorithms for constructing n-th order smooth- 
ing splines by means of experimental (kinetic)dependences are elucidated. 

i. Let the function f(x) e cQ[x], Q e n that takes on the approximate values f(x I) + 
61 ..... f(x N) + 6 N be given discretely with the errors 61 ..... 6 N at the nodes x I ..... 
x N on the segment X c R. It is required to approximate the function f(x) in each interval 
[x i, xi+l), i = I, N - i by a polynomial of n-th degree, n e 3: 

yi  (X) : aoi + al i  X -F a~i x z  + . . . i - .  ani  xn,  x 6 [xt ,  Xi+l) (1)  

so as to satisfy the requirements [1-6]: I) fusion of the spline derivatives at the mesh 
nodes S = {x I ..... XN} up to the (n - i) order 

I ~ �9 ." : , ~ I n 
aoi  -J- O'li)'i - 7  Cl2i,'~i ~ . . . .  --F- ar, iXi : -  ao.i§ 

~(n--  l)! a , . .  1 i '--n! a , i x  i - a,~ 1 i--l, i :~- l~  N - - 2 i  

II) the requirement of minimal variation of the (n - l)-derivative of Yi(X) (i.e., 

(2)  

x A, j' (/"-'~ 
x i  

in order (x))~ corresponding to condition [a~i I ~ min, v = n - i, n, i = i, N - i, 

to avoid oscillating behavior of the graph of the spline; III) location of the spline graph 
within the error corridor: 

[ I/~ (xl )  - -  ao~l ~ .  6j, l - -  1, ,u - -  1, 
(3)  

1! /6  (x .v)  - -  ~  - -  ~l  . , v - , x , v  . . . . .  a , , . , v_ , x ; , .  I -.<. ~.v. 

2. Conditions I and III yield the search domain for the interval values of the spline 
approximation coefficients by the system of constraints 

aol < [8 (xi)  q -  6i ,  
i 

- -  aol ~ - - f 6  (Xl) ,-[- tSi, 
9 i n ~ 01 

aoi -17 OliXi., 1 "-[- a,,ixT:--i ~.. �9 " " -V ani3.i+l - -  ao . i  ~-i (4)  
�9 . . o . i 

(n - -  1)[a,~_t. i ~  n! a,tixi: t -a , ,_ l , i+ t  ::0, i : :  1, N - - 2 ,  

ao.,~_, -~/1~ (xx_0 + a.v_.,, 
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J --- aO,N__ 1 "~ - -  f6 (XN, I) + ~NTl:' 
aO,N,1 _A c Ctl ,N ,  IXN .2 c a2.N_lX- N .ql_ . . .  _~_ an,N_lX~ v ~ [~ (XN) .+. 6N, 

-- (a0.N_ 1 -~- al ,N_lX  N 2C Cl2.N_IX2N Af-i" " " + Ctn,N_lX~ ) ~ -- [6 (X N) ..If- ~)N. 

(4) 

Since the coefficients aij, i = 0, fi; j = I, N - i can have different signs and the 
standard linear programming problem to which obtaining the interval estimates for a ~ re- 
duces has just nonnegative solutions, we set a~#- ~;f--a'ii, where a~i, a~[i ~ 0. Then condition 
II results in the requriement of minimum of the absolute value la~#l =: [a~i--a~]l, v = n--I, n, 
in each interval [xj, xj+s j = i, N - i. Obtaining the interval estimates for aij with 
requirements I-III taken into account can be realized by different means, for instance: 
A) determination of, the coefficients a~j, v = n - i, n, j = i, N -i, initially and then a~l:l 
the rest; a, ij, i = 0, n - 2, j = i, N - i; B) simultaneous determination of all coefficients 
by using the multiparameteric regularization method [7] for the components of t~e solution 
a~j, v = n - i, n, j = i, N - i. 

MODIFICATION A 

In each interval [xj, xj+1) we: find minimal values of the coefficients a vj ~ ~ = n- i, 
n, j = i, N- I, in absolute value, for which we solve two problemsv Maximize zx~j = a vi 
under the constraints- (4) anff maximize z2~ i =-avj also under the constraints (4). Then 

0 ~, �9 ~ taken as avj , v = n --l, n, should be~ the mxnamal value in absolute value of {Iz1~jmaxl, 

Iz=~jmax[}, i.e., a~~176 Where [avj~ =min{[~.~jmaxl, Iz=~jmaxl}, ~--n-l, n. 
Furthermore., we find the uniformly minimal value a'vjmin." ~ = n - i, n, in absolute value in 

the segment [xl, x N] as ~m~ = ~a$~, where the proportionality factor ~ is determined from 

the solution of the problem to maximize z~ = -~ under the constraints (4) but in which all 

the monomials avjxj m are replaced by ~avj~ m, ~ = n - i, n, j = i, N -'i, m = 0, n. 

Afterwards we proceed to obtain interval estimates for all the other coefficients aij, 

i = 0, n 2, j = I,,N~- i for which + -- ... zij = aij, i = O, n - 2, j = I, N - l"must be maximized 

under the.constraints (4) but in which- all the-monomials a vjxjm; v = n -- I, n~ are replaced: 

by the quantities Z3maxav3 ,. 0xj.m al=eady known and transposed, respectively, into the right 

sides .of. the constraints~ and a~iso to maximize zi~ = -aij under the same constrains Then 

the desired" interval estimates for a ij~ i = 0,. n - 2, j = i,. n~- 1 are determined, as 

+ + 
a~ = {~< Z~m~ ~ for Z ~  > O. ~< Z-~,~., for 

Z-/)max<O, ~2"/Jma x for Zi]max>O , (5) 
+ + 

/>Z~m~ ~ for Zi~m~<O}, i = l ,  n ~ 2 ,  ] = 1 ,  N--1 .  

MODIFICATION B ~ 

To find the interval estimates by the method of linear programming with the requirements 
I-III taken into account, we apply multiparametric regularization to obtain solutions with 
minimal prajection norm in the solution subspace def`ined by the coefficients ~ avj, v =n- i, 
n~ j .... I, N ~ l. Seeking the solution a(r ) e RP with minimal projection norm: in the~ subspace 
R =, r ~ p, (norm of the vector (a(r))T= (ah+! ..... ah+r), O~k~p, l~r~.p--k), by the mul~iparametric 
regularization method: for the linear systems X(N p)a(p 1)=y(N i) or the linear, progrannning ~ prob- 
lem max Ca under the: constraints Xa~.y (the dimensionalities of: X, a and y. ave the~ same): 

a 

reduces by artal~gy with [ 7] to the solution, respectively, of systems XW~r)u=y or max CW~r)u 
u 

undee the constraints XW(r)U~<y, where Wit ) is thematrix, 0 ~ k ~ p, i ~ r g p~- k,. of form 

E~k) i Oik• {~,p)-k, 
m 

l 

W ( r )  = X~-~.l,h+r(rxN ) Ii O(r  X ( p _ N ) +  ) , ( 6 - )  
I [ " - -  ]- 

[ 



i[ x1'k+j "''XN'k+1\];(p- N)+ = {p- N for p > N and 0 for p < N}; E(.) is the where Xk+l,h+~ = 
X XI ,h+r "XN,k+r / 

unit matrix of dimensionality (.). Then the solution with the minimal projection in the 
solution subspace is a(r) =W(r)U. For k = 0, r = n the matrix is W(n) = X r [7]. In matrix 
form the system (4) is 

X a < y ,  ( 7 )  

where 

1 - - 1  I 

2 ] - - 1  

X = 

0 

L 

1 0  

- - 1  0 

0 

d i-1 
1 0 . . .  0 

- - 1  0 . . .  0 

1 x ~ . . .  x~v 

-- i --x N .... x~v 

. . . . . . . . .  

. . . . .  ' �9 �9 �9 0 

1 x j  . . . .  xn.-1 x n 
I 1 

0 1 2Xj " (17.-- ])X7--2 /~X7 -1 
�9 ~ . . . . . . . . .  , �9 o ~ 

0 . . . . .  0 n - - l ) !  n ! x j  

0 . .  0 

0 .  �9 �9 0 

- - 1  �9 �9 �9 0 

�9 �9 �9 - -1  

, 1 ~ 1 ,  N - - 2 :  

Glen the desired interval estimates of the spline coefficients are obtained from the solu- 

tions of two problems: Maximize ~i = ai, i = i, (n + I)(N - I) under the constraints 

X W < n - l , ~ ) u ~ y ,  ( 8 )  

where W(n_1,n) is the matrix (n + I)N x max{N, p}, whose submatrix X(n_l,n) rows consist of 
columns of the matrix X, corresonding to the coefficients 

a ~ j , w = n - - 1 ,  n; (ai, i =  1, ( n + l ) ( N - - 1 ) ) ~ - a ~ - - - W ( . _ l , ~ ) u ;  

y r  = (f6(xl) _~_ 6• - - f 6 ( X i )  + 61, 0 . . . .  , 0, f~ (XN--2) Jr- 6N--2,--f0(XN--2) "-~ 

+ 6v_~, O, ..., O, f~(xN_l) + 6N_ ~, --f~(xN_ ~) +SN_ 1, A(X N) + 6~, 

-- f6 (XN) + 6^3, 
and  a l s o  m a x i m i z e  Z i = - a  i u n d e r  t h e  c o n s t r a i n t s  ( 8 ) .  
are determined as 

-u . + 
a~ = {~< z~m~x for Z/max > 0, ~<;/m~x for 

+ + 
Z/max > 0, ~ Zimax 

Then the desired interval estimates 

Z/m~ x < 0, ~> ~ma~ ~or 

for Z~ma• < 0 } ,  i =  1, ( n +  1) (N--  1). 

(9)  

335 



As in modification A the values a i can here be estimated as ai-=(aima x + aim~n)/2. 

3. It is requiredto determine the contribution of each node x~ with the value f6(xj) + 
6. from the network ofnodes S as well as the errors 6", j = i, N in-the values of the u per 
a~d lower bounds of the interval estimates of the coefficients aij in order to constructPthe 
optimal network S * c [xt, XN] from the condition of minimum.lengt~ of the interval estimate 

'Aa t=latmax-a~mm{ of the given coefficient a~ l= i, (n + I)(N - i), i.e., 

Aaz-.g--,,-min, (i0) 

or from the condition of minimum sum of the lengths of the interval estimates for several or 
l~q 

all the coefficients ~Aoi, /~.~I, l+q~.~(n-!-])(N--l), i.e., 
l=l 

l-q (Ii) 
.~ ,~Aai-~-+min.  

To estimate these contributions as well as the contributions of the conditions for fu- 
sionof the derivatives (2) on the boundaries of the interval estimates for a i. it is re- 
quired to solve problems dual to (4) and (5) (modification A) or to (8) and (9~ (modifica- 
tionB). 

Modification A. We obtain the contributions mentioned from solutions of the problem: 

Minimize z~ = yrB~, where 

y rB~ = (f+ (x,)  + 6 , )  bl  - -  (f+ (x~) - -  6,) %'i - -  Co, _~ ,  x f i - ' ~  a,,x~) b~ - -  ((n - -  I) a,,_,. ,  x~ -2  + na,,x:~--') b]~ @ . . .  + 

-~- (a,,_ t .~ - -  (n l)Io,,_,., - -  n.a , , ix2)b_t ,  t + " "  .x_ ([+ (X,v._2) -5 6,v. _o)bl,,._o - -  ([+ (xx_o) 6x_z) .v_._~ - -  

( a n - - l , A ' - - 2  n - - I  _ ~  .n " . . n - - 2  . - ) . - t lan,A,_2 ~,.,,7--1 "% - -  x , ~ , _ l  ~ bto.^. ~ - -  ((,z --1)  a,,_u ^-.~x:v_l XN_ l a ~.__,, " - , v - . b ~ , . u  

-t 
n - -  1 , b i  - -  "'~ (a '~- I . ' v - l - - (n- -1) !a ,~- l .N-2--n!an .XJ-  x.~,'--l) bt , N-2~-(/6(X~'-I) + 6,v-1) X--t--(/dX:v--l)--6A'_l) b~._ l -5 

§ 
- -  " - x "  ++ b t - - ( [ 6  ( x  x )  - -  6 . v  x ~  :-J " "  - ~  + ( f + ( x ^ , ) + 6 l , .  a _ ~ . , ~ , _ :  x'<. 1 - - a  . x _  t ,, . ,  .~. - - a , : _ l , x _ ,  ' , _ a  ,~._l  x x ) O x ,  

under the constraints 

(t2) T -.~ (Xll ,~-,.,,,) B~ w:  e~, l - 1, (,z - -  1) ( N  - -  1), 

w h e r e  B[ = (b',, b:l' l)~, . . . . .  b~v, -b.~;) i s  t h e  v e c t o r  o f  t h e  c o n t r i b u t i o n s ,  e r =  i 0 . . . 0 1 0 . . . 0 ) ;  X<! .... ,,n) 
denotes the matrix X without columns corresponding to the coefficients avj, v = n - i, n, 

l -_/ 

j = 1 N - 1 Then the components of the vector Btm :b ( biin are contributions of the 
' " . / r a i n '  

quantities f6(xj).+ 6j and f6(xj) - 6j at the upper bound of values of the component as 
of the coefficient vector .a (the coefficients a,,_l, j, anl .... , a,~._l.,v_l, an,.~:_l -are not components 
of ) and b̂tii is the contribution of the condition for fusion of the i-th derivative at the 

$ 
j-th node of the networkS. Hence, the contribution f6(xj) to as is determined as (bSmin-5 

b~min)/2 , whilethe values of the errors 6j are as (b~min--b;'min)/~ The contributio,s of these 
same quantities are estimated analogously at the lower bound of the component as of "the 
coefficients vector of the spline a: Minimize ~=yrB, :under the constraints 

( X c n - , . m ) r B t ~ - - e  t, l =  1, ( n - - l )  ( N - - I ) .  ( I 3 )  
z 

" 'l b t "t l = l ,  ( n - -  1 ) ( N - -  1), Then.the components of the vector of the solution Blmln: b/rain, imln r biimi n, 
i=0, n-- I, ]= I, N, are contributions, respectively, of f6(xj) + 6j, f6(xj) - 6j and the fu- 
.sion condition for the i-derivative at the j-node of the mesh S at the lower value ofth~ 

component as of the coefficients vector of the spline a. Then the contributions of the 

quantities f~(xj), 6j to value as n are determined as (blmln-5b~min)/2 and (bjmint __ heroin)P21 respec- 
t ively. 



Modification B. We obtain estimates of the desired contributions from the solutions 
+ 

of the problems dual to (8) and (9): minimize Zt = yrBz under the constraints 
l 

T T T W(n-,,n)X B~>W(~_t,mCt, Cz = (0...010...0), I = 1, ( n +  1 ) (N- -  1), (14) 

and also minimize ~E = yTBE under the constraints 

W~-l,~)XrBz ~> r --W(~_~.,)Cz, l =  1, (n-f-  1)i(N-- 1). (15)  

Let B~min and B Lmin denote the Solutions of the problems (14) and (15). Then the desired 
contributions of the nodes of the network S, the errors ~j, and the conditions for fusion of 
the derivatives at the boundaries of the interval estimates for the Spline coefficients, in- 
cluding the coefficients an_l,j, j = i, N - 1 in this case, are determined by the components 

of the vectors B ~min and B Emin" 

In conclusion, we note that the algorithms considered are general in nature and can be 
applied for the construction of splines of different orders and defects on the basis of other 
basis functions; questions of the existence and uniqueness of the appropriate splines do not 
here enter within the framework of this report. 

NOTATION 

6 i, error of giving a function at the i-node; xi, coordinate of the argument at the i- 
node; X = [xl, XN], segment on which the function is given discretely; R, a one-dimensional 
axis; f(x) ~ C~[X], aQ times differentiable function in the segment X; f(x i) + 6 i, f6(xi), 
values of the function in the i-node aggravated by errors; n, order of the polynomial spline; 
Yi(), running value of the approximating polynomial between two nodes; ai~, i = 0, n, j = 
i, ~ i, a~j, coefficients of the approximating polynomial between two noaes; S, node net- 
work; =~, ~j, terms of the difference representation of the spline coefficients; avj ~ minimal 

+ - ~ - + - 
value, in absolute value, of the coefficientsavT;z1~i, z2~j, Zij, Zij, Zsma x, Zi,Zi, gl, g I are target func- 
tions of the appropriate linear programming problems; ~, constant factor; avjmi n, uniformily 
minimal, in absolute value, values of the coefficients avj in the coefficients X; RP, R r, 
Euclidean spaces of dimensionality p and r; x, matrix of the left side of the system of lin- 
ear algebraic equations; a, vector of the desired unknowns of the system of linear equations; 
y, vector of the free terms (the right sides) of the system of linear equation; W(r), ma- 
trix of the mapping of the space of solutions of the system of linear equations into control 
space in the multiparametric regularization procedure; u, vector of the control (regulariza- 
tion) parameters; Bt={~, ~}, vector of contributions of the quantities f~(x i) + 6i, f6(xi) - 
~i and fusion conditions for derivatives in the interval estimates (their upper and lower 
bounds) of the smoothing spline coefficients. 
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