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CONSTRUCTION OF SMOOTHING SPLINES BY LINEAR PROGRAMMING
METHODS

A, G. Pogorelov UDC 517.536.946

The mathematical questions and algorithms for constructing n-th order smooth-
ing splines by means of experimental (kinetic) dependences are elucidated.

1. Let the function f(x) € CQ[X], Q 2 n that takes on the approximate values f(x,) +
81, +.., F(xN) + 8y be given discretely with the errors §,, ..., 8y at the nodes x;, ...,
xy on the segment X ¢ R. It is required to approximate the function f(x) in each interval
[xi, Xi41)» i =1, N =1 by a polynomial of n-th degree,n 2 3:

V(%) = aoi + ayux + ayx® 4 -+ 4 i’y X€ (K Xin) (1)
so as to satisfy the requirements [1-6]: I) fusion of the spline derivatives at the mesh
nodes S = {x;, ..., XN} up to the (n — 1) order

Qyi + ali'\:i - a:i-"z? R - N Ay i+1s (2)
(f'L - ])' n..1.i "— ! Qi = Ay i1 { ;Tm

XA'
II) the requirement of minimal variation of the (n — 1)-derivative of y;(x) (i.e., \'(y”‘”
X
L@Fdxirnﬂn} corresponding to condition |ayy| z min, v =n - 1, n, i =1, N~ 1, in order
to avoid oscillating behavior of the graph of the spline; III) location of the spline graph
within the error corridor:

]'lfe(xi)"ani|<6i, (-1, N—1,
(3)

. . . , n
o (xy) =@y vy —ay y_xy— - — a, o1 XN <8y

2. Conditions I and III yield the search domain for the interval values of the spline
approximation coefficients by the system of constraints

(ag; < fo (x:) + 8,
1
—ay <K —foix) + i
L2 : ! N a =0
Qo; + QyiXjay -+ GoiXi) 0 T GaiXiz T G 1y =Y ()

]
I e
{ n— Da, -+ it ayXio— 0y i+ =0, == 1, N—2,

Ay -1 Loy )+ LIV
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| T %9, N—1 < —Foley_ )+ 8y
i . 2 n
YIRS S MSVIRE IVE, SR SSSVARE S o skl e MPVIRES S fo txy) + By,

R O VA e TSP VIR T v az,N_xx?V Fo Tt an,N—lan) < —TFalxy) + 8y,

(4)

Since the. coefficients aj3, i = 0, n3 j = I, N — 1 can have different signs and the
standard linear programming problem to: which obtaining the interval estimates forajj re-
duces has just nonnegative solutions, we set g, = ai',-——a';i, where a;;, a;; >0. Then condition
II results in the requriement of minimum of the absolute value |a4 = |ay; —ayh v=1n—1, 7,
in each interval [xi, X341), j = I, N — 1. Obtaining the interval estimates for ajj with
requirements  I-IIT taken into account can be realized by different means, for instance:

A) determination of the coefficients Gysi, v=n—1,n, j =1, N~ T, initially and then ail
the rest; ay3, £ =0, n — Z, j =1, N—1; B) simultaneous determination of all coefficients
by using the multiparameteric regularization method [7] for the components of the solution
ayjis v=n—1,n, j=1, N —-1.

MODIFICATION A

In each interval [x:, Xj+~1) we. find minimal values of the coeffiecients a-\,j", vo=n - 1,
n, =1, N—-1, in abso‘lute value, for which we solve two problems: Maximize z,,; =ayj
under the constraints (4) and maximize z,,j = —ayj also under the constraints (4).” Then
taken as “vjo’ v =n — 1, n, should be: the minimal value in absolute value of Hzl\)jmax‘ s

. ) : 0,0 : .

|Z2vjpaxl}s i-e.s avj=signaylayl, where |2,3°| = min{|21yjpaxls |22vipagl}s v =n =1, n.
Furthermore, we find the uniformly minimal value Aviminr ¥ = n.—1, n, in absolute value in
the segment [x;, xy] as au, = oa), where the proportionality factor a is determined from
the solution of the problem to maximize z; = —o under the constraints (4) but in which all
the monomials avajm are replaced by ocavj"x-jm, v=n-1,n, j=1, N—1, m =0, n.

Afterwards we proceed to obtain interval estimates for all the: other coefficients Qg
i=0,n-72,j= m—:—f for which z35 = a3, 1 =0, n—~7Z, j =1, N~ T must Be maximized
under the'constraints (4) but in which all the monomials a,\,j.xj“f’, v = n - 1, n; are replaced
by the quantities zamaxa\,j"":«:jm already known: and: transposed, respectively, into the right
sides .of the constraints,. and also to maximize Eij = "aij‘ under the same constraints. Then
the desired interval estimates for Gy3, 1 =0, n~— 2, j =1y m— 1 are determined: as

- + —
@ = {< Zilpgay for Zijg, >0, <2y .o for

zijmax<0, >2ijmax for Z‘i]-max>0; (5)
+ ——
S, for zy <0}, i=1, n—2, j=T, N—1.

MODIFICATION B

To find the: interval estimates by the method of linear programming with:the requirements
I-TIT taken intov account, we. apply multiparametric regularization to obtain: solutions: with
minimal projection norm in the solution subspace defined by the coefficients: ayjs vV =n = 1,
n, j =T, N— T.. Seeking the solution a(y) € RP with minimal projection norm: in the: subspace.
RY, r < p (norm of the vector (ap)T=-(Grts,.., Guir), 0OSR<p, 1<<r<<p—k), by the multiparametric
regularization. methed for the linear systems X pap n=yuw ;, or the: linear programming prob-
lem: max Ca under the: constraints XaxCy (the dimensionalities of X; a and y are the: same)’

reduces. by analogywith [7] to the solution, respectively, of systems: XWjyu=y or max CWeu
u

under the: constraints. XWnu<ly, where Wi, is the.matrix, 0 s k < p, 1 < r ¢ p— kK, of form
( L. .
1 E) ! Othsc(max (3,03 ]

|
8 i | \
Wiy = | Xettatriyn | Ot ; (6)

S
O¢p—h—r) k-t Eqp—t—r) | Oo—r—r)x(p—).]
| i :

s

334



X caex
where Xatiatr= ( Lh+1 Noht
Xihtr XN R

unit matrix of dimensionality (:). Then the solution with the minimal projection in the

);(p ~N)y ={p—Nfor p >N and 0 for p < N}; E(.) is the

solution subspace is a;) = Wpu. For k = 0, r = n the matrix is w(,,)sxT (7). In matrix
form the system (4) is
Xa<y, (7)
where
A=t
0
. ||
X= =T :
j 1 0
0 —1 0
! 1 xy Xy
l —1 —xy =2l
10 .« o ... ... 0 ]
—10 0
E— 01 2¢ . - (n— Dxr=2 nxr=l
C..... 0 (n—1) nlx; J
- 0
-0
— —_—1 - - .0
—1 = ) , =1, N—2
0.« v —1

Then the desired interval estimat-el_s of the spline coefficients are obtained from the solu-
tions of two problems: Maximize zy = aj, i =1, {(n + 1)(N — 1) under the constraints

AW, <Y, (8)
where W(y-1 ) is the matrix (n + 1)N x max{N, p}, whose submatrix X(n-1,n) rows consist of
columns of the matrix X, corresonding to the coefficients

ay, v=n—1, 0, (0, i=1, (n4+ NN—=1D)=a= Wy ,ii;
yT= (Fo(x) + 08, —[fs(x)+ 85, 0, ..., O, fy(xn—2) + Onz, —f5(xn—2) -+
+6N__9» O’ trey O: fé(xN_])+6,v_1» "’fé(xjv_.l) +6N-_1’ fé(xA’)+6N’
- f& (XN) + 61\7)7

and also maximize Z; = —a; under the constraints (8). Then the desired interval estimates
are determined as

4
T

+ - - -
2= {< Zimax for 2imax>0’ <Zimax for zimax<0» >Zimax for

(9

+ +, -
Zimax>0’ >2imax for Zimax <0}’ =1, (/1+ 1) (N"— 1)
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As in modification A the values aj can here be estimated as a; = (Qip, + Qip,)/2.

3. It is required to determine the contribution of each node xj with the value fg(x;) +
§; from the network of nodes S as well as the errors &3, j = 1, N in the values of the upper
and lower bounds of the interval estimates of the coefficients ajj in order to construct the
optimal network $* c [x,, xy] from the condition of minimum lengtﬁ of the interval estimate

Aa, = lay,,, — a,;,| of the given coefficient g, /= 1, (n'+ 1)(N — 1), i.e.,

Aa;—— min, (10)

or from the condition of minimum sum of the lengths of the interval estimates for several or
=g

all the coefficients }:Aai, IZL i4g<(n+-1)(N—=1), i.e.,
=1

I—q

11
2 Aa;—— min. (L
==

To estimate these contributions as well as the contributions of the conditions for fu-
sion of the derivatives (2) on the boundaries of the interval estimates for a4 it is re-
quired to solve problems dual to (4) and (5) (modification A) or to (8) and (93 (modifica-
tion B).

Modification A. We obtain the contributions mentioned from solutions of the problem:

Minimize ;;;:yTBh where

y'B, = (6 (x2) +81) le — (fs (x) — &) by — (@, ¥ amxg) by, —((n—Da, ) 2472 = =) b e
= —

-+ (0,5_1 o (/? - 1)“011—1,1 - n!anlx?.)b;,z_l'l Ao (ié (x,v.._g) + 61\7---‘_’) bf\'-—? - (fﬁ (x.\'——’.’) - 6.’\'—2) b N2 T

_ 1--2 3
Sl CINRNIPE < al o IS Y | 23 o —((n—=Dany, ¥—2X37y Hna, o xTTVE e

" 1, -
e,y =D,y o—ntay o Xy ) Oy o (s () 8y by—i—{falxy_)—65_,) b, +

+ (Fo (xp) +8y — @,y v ST 0, vy x")l)’ —(fs(xy) =8y —a,_; v X3 —a, \_ XY b
under the constraints
(X1 nton) B, ey, 1= T, (1 = TV 1), (12)

- + A
where B] = (0}, i, b, ..., b\, B.) is the vector of the contributions, el=(0...010...0) X1 nu1.m
denotes the matrix X without columns corresponding to the coefficients ayj» v=n -1, n,

pait]

j =1, N= 1. .Then the components of the vector B, : b&ﬂm b’ .. are contributions of the
quantities fs(x )+ 8§y and fa(x ) - j at the upper bound of values of the component gy,
of the coeff1c1ent vector -a (the coefflc1ents 4, 1 Ay o Ay s 4, 4y -are not components

of ) and b’ is the contribution of the conditien for fusion of the i-~th derivative at the
J-th node of the network ‘S. Hence, the contr1but10n fa(x ) to @pnax 1S determined as (H n%—‘

)2, while the values of the errors §; are as(b —*b: J2. The contributions of these
same. quantities are estimated analogously at the lower bound of the component 9 9min of ‘the
coefficients vector.of the spline a: Minimize z, =y "B, under the constraints

Xena1)TB > —e, I=T, (n— 1) (N—1). (13)
Then.the components of the vector of the solution man:zhm; @mm Eamn l=1{n—1HN~—-1,
i=0, n—1, j=1, N, are contributions, respectively, of fé(XJ) + 63, fé(x ) - 6 and the fu-
-sion condition for the i-derivative at the j-node of the mesh S at the lower value of "the

component ag .  of the coefficients vector of the spline a. Then the contr1but10ns -of the

. [} . _{_
zt.zan;nles f5€xj), 8y to value ag . are determined as (b'l.mm+b1 /2 and (b‘ —b;mm)/2 respec-
ively.
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Modification B. We obtain estimates of the desired contributions from the solutions

-+
of the problems dual to (8) and (9): minimize 2 = y'B, under the constraints
1

Wio1,X B, > W, €, €, =(0..010..0), [=T, (n + 1) W—1), (14)

and also minimize zy = yTBg under the constraints

WX B> — Wi €, [=T1, (nF 1) (N— D). (15)

Let glmin and By . denote the solutions of the problems (14) and (15). Then the desired
contributions of the nodes of the network S, the errors §:, and the conditions for fusion of
the derivatives at the boundaries of the interval estimates for the spline coefficients, in-
cluding the coefficients dn-1,3s j =1, N—1 in this case, are determined by the components
of the vectorsBlmln and Blmln

In conclusion, we note that the algorithms considered are general in nature and can be
applied for the construction of splines of different orders and defects on the basis of other
basis functions; questions of the existence and uniqueness of the appropriate splines do not
here enter within the framework of this report.

* NOTATION

§4, error of giving a function at the i-node; xj, coordinate of the argument at the i-
node; X = [x,, XN], segment on which the function is given discretely; R, a one-dimensional
axis; £(x) e CU[X], aQ times differentiable function in the segment X; f(xi) + 84, £5(xi),
values of the function in the i-node aggravated by errors; n, order of the polynomial spline;
yi(x), running value of the approximating polynomial between two nodes; aj;, i =0, n, j =
1, N - l, i coefficients of the approximating polynomial between two noées S, node net-

work; a.,aj, terms of the difference representation of the spline coefficients; a\)J R minimal
+ = + -
value, in absolute value, of the coefficientso,; 2, %y 250 25 Zagaxe 25 2 Q,zz are target func-

tions of the appropriate linear programming problems; a, constant factor; ayi,.:., uniformily
minimal, in absolute value, values of the coefficients a, 3 in the coefficients X; RP, RT,
Euclidean spaces of dimensionality p and r; X, matrix of the left side of the system of lin-
ear algebraic equations; a, vector of the desired unknowns of the system of linear equations;
y, vector of the free terms (the right sides) of the system of linear equation; W(y), ma-
trix of the mapping of the space of solutions of the system of linear equations into control
space in the multlparametrlc regularization procedure; u, vector of the control (regulariza-
tion) parameters; B,=(B, B}, vector of contributions of the quantities fg(xj) + &3, fg(xi) —
§; and fusion conditions for derivatives in the interval estimates (their upper and lower
bounds) of the smoothing spline coefficients.

LITERATURE CITED
1. C. H. Reinsch, Numer. Math., 10, 177-183 (1967).

2, R. Varga, Functional Analysis and Theory of Approximation in Numerical Analysis [Russian
translation], Moscow (1974).
3. S. V. Stechkin and Yu. N. Subbotin, Splines in Computational Mathematics [in Russian],

Moscow (1976).

4, V. A. Morozov, Zh. Vychisl. Mat. Mat. Fiz., 11, No. 3, 545-558 (1971).

5. A. I. Grebennikov, Method of Splines and Solution of Incorrect Problems of the Theory
of Approximations [in Russian], Moscow (1983).

6. V. A. Vasilenko, Spline-Functions: Theory, Algorithms, Programs {in Russian}], Novo-
sibirsk (1983).

7. A. V. Chechkin, Dokl. Akad. Nauk SSSR, 252, No. 4, 807-810 (1980).

337



